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1 INTRODUCTION

Synthesizing textures can have various applications in computer
graphics. From a source texture, the problem involves creating a new
target texture that resembles the source texture. Naturally, one of
the challenges is to ensure that the synthesized texture is coherent in
terms of colors, patterns, scale... This topic has been widely studied
for instance with patch methods [26, 29], non-parametric methods
with Markov random fields [27, 28], energy minimization [19] and
more recently with deep learning models such as autoencoders,
GAN [30], or diffusion models [31].

In this work, we will study thoroughly the method proposed
in [1], try to reproduce the results, and attempt to enhance the
robustness and efficiency of the proposed approach. We shall be-
gin by providing essential definitions for the Wasserstein distance
and its sliced version. Subsequently, we will show how this ap-
proximation can be applied and its utility in texture mixing using
the steerable pyramid [15]. We will also propose new methods for
texture mixing. Finally, we will discuss the limitations and conclude.

The source code is publicly available at https://github.com/AntoineRtk/

TextureMixing.

2 BACKGROUND

2.1 Wasserstein distance

Let Q be an arbitrary space, () be the set of probability distri-
butions with finite p-th moment and y € P (X), v € Pp(Y) two
measures defined on spaces X,Y C R9. We remind Pp(Q)={ne
P(Q) | fQ u(x)Pdx < oo}

The Wasserstein distance of order p is defined as:

1/p
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where d is a cost function and II is the set of all couplings between
1 and v, which is a joint probability whose marginals are y and v.
If u and v do have a finite moment of order p, then, W, is a metric
[2]. For the rest of this work, we will use d(x,y) = |x — y|.

From now on, we will also consider discrete probability distri-
butions a, f of same cardinal #X = #Y = N in Rd, represented as
point clouds. Formally,
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where dx is the Dirac measure in x with each coordinate being
unique, (x;), (y;) € RY. Given this setting, we will take into account
the permutation of the values which is

Xo = {(Xo(i))X; | 0 € BN}

where Sy denotes the set of permutations of the N elements.
Therefore, each point has one unique assignment, so we can rewrite
the problem (1) as:

N 1/p
Wp(uv) = Wp(X.Y) = | min ;doc,-, Yo(i))? @)

Computing (2) directly with a brute force approach would result in
a O(N x N!) complexity. Instead, one can consider the following
minimization problem:

pmin ) Pudlny)?
(i.j)€{L,...N}?

N
s.t. ZPi’jzl Vje{1,...,N}
®)

i=1
N
ZP@J‘ =1 Vie{l,...,N}
=

Pij(1-Pij) =0V(i,j) € {1,...,N}?

which is in a standard form that can be solved with a linear pro-
gramming algorithm with a complexity of about O(N? log N) [4].
This minimization could also be seen as a complete bipartite graph
problem and thus solved by using the Hungarian algorithm [5], but
with a higher complexity.
Finally, the 1D case can be solved very efficiently [3], the optimal
assignment minimizing (2) is:
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where ox and oy are respectively the permutations ordering the
point clouds X and Y. Equivalently, we can sort both point clouds

and compare them, which can be computed with a O(N log N)
complexity.

2.2 Wasserstein barycenter

Wasserstein barycenters, initially introduced in [6] are constructed
through an analogy with barycenters in the Euclidean space. Indeed,
the Wasserstein barycenters of a collection of random variables are
defined as minimizers of a weighted sum of Wasserstein distances.
The Wasserstein barycenter for a sequence of point clouds {X; €
Rd}l’.‘:l is formally defined as:

n
Bar(A;, Xi)1<i<n = argminz AW, (X, X;) (5)
X =

n
where (Ai)1<i<n = {(Ai)1<i<n € R+ | X A; = 1}. This can intu-
i=1

i=
itively be seen as a point cloud that is close to all the other point
clouds in the Wasserstein sense.
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2.3 Sliced-Wasserstein distance

As seen at the beginning of this section, computing the Wasser-
stein distance can be computationally expensive as the number of
samples N grows. For this reason, there is another approach, the
Sliced-Wasserstein distance [8] that leverages two ideas: projecting
a distribution in one dimension by the Radon transform [7] and us-
ing the closed-form expression for these two distributions to solve
the minimization problem. The Radon transform aims to reduce a
multi-dimensional distribution to a one-dimensional representation
through linear projections. Let S9-1 = {9 € RY | ||0]|2 = 1} be the
unit sphere in R%, where 0 is uniformly distributed and I € L!(R%),
we define the Radon transform as:

Rl(t,9)=/ I(x)8(t - (x,0)dx V(1,0) eR x s (6)
R4

Note that R (-, 6) is continuous for a fixed . Since we are dealing
with point clouds, the Sliced-Wasserstein distance of order p is:

SW,(X,Y) = /eesd-l W, ((X,0),(Y,0))do (7)

where (X, 0) is obtained by Ra(-, 6) in a discrete setting. By doing
this, it brings us back to the optimal assignment problem in 1 dimen-
sion (4). The Sliced-Wasserstein distance also benefits from good
properties such as being a distance [9, 10]. In practice, computing
(7) is intractable, instead, we use a Monte-Carlo scheme with K
random projections on the unit sphere §9-1 such that:

L
SW), = % W ((X,0), (Y, 0))

i=1
where L > 1 is the number of projections. It has been noticed that
the number of projections L should be comparable to the number
of features d [13, 14]. However, in practice, we found that using
L =1 was sufficient. Other alternatives exist such as the be used
such as the Max-Sliced Wasserstein [11].

Analogically, we define the Sliced-Wasserstein barycenter by:

n
Bar(Ai, Xi)1<i<n = argmin Z AiSWp (X, X;) ®)
X =

2.4 Applications to point clouds

Remaining in the same parametrization with two point clouds X
and Y, we seek to minimize (7).

Stochastic gradient descent: by smoothness of the Sliced-
Wasserstein [3], one can use the stochastic gradient descent with
Newton step. It yields to compute:

X = X0 (V2 SWEXD, Y)Y SWE(X 1, Y) (9)
where

Vo SWEXD,Y) = Vi) /Hesd_1 W2((x"),0),(Y,6))d6
= v in [[(X(),0) - (Y, 0540
[ T min 1469,6) = (1,01
= [ T X = 1.0y s
e

_ / 2X® ~ Y, 0,07 do
fesd-1

where o is the solution defined in (4).

and

V2, SW3(X 1, Y) = 2007
We choose = 1. We denote Psw; (X,Y) the minimization after

gradient descent.

— n
Similarly, V() Bar (4, Xi)1<i<n = . AiVx0 SW2(X(*), X;) and
i=1

we suppose that J,B\a_;(/l, Xi)1<i<n is obtained by gradient descent
for the rest of this work. There have recently been theoretical guar-

~— [—00
antees of convergence of Bar — Bar [12]. Examples can be seen
in figures 1 and 5.

3 TEXTURE MIXING

3.1 Steerable pyramid

The steerable pyramid introduced by Heeger and Bergen [15], en-
ables the synthesis of textures with high fidelity. This algorithm
operates as follows: starting from a source image, a high-pass and
low-pass filter are applied to the image. The low-pass image is
subsequently subsampled by a factor of 2 and decomposed into
multiple orientations using bandpass-oriented filters [16, 17]. We
can mention that the representations benefit shift invariance from
low-pass filtering. These operations can be repeated in a cascade a
certain number of times, allowing the capture of meaningful struc-
tural information. By applying various adjustments at each scale
and orientation, the algorithm can reconstruct and generate a final
result that closely resembles a target image. Formally, let S be the
number of scales and Q the number of orientations, given an input
image, the pyramid will produce S X Q + 2 images, including:

(1) ahigh-frequency image at the first scale

(2) S x Q high-pass oriented images at different scales

(3) alow-frequency image at the final scale

We describe the use of steerable filters introduced in [16]. From

now on, let u € RVNXN be a discrete image of size N x N, N being

even. The discrete Fourier transform of u is:

SRS 2inkp/N —2inlg/N -N
F u} = Upge " e < V(k 1) e {—,..
(ki {u} 1;);) p.q ()] {2

(10)

and the inverse discrete Fourier transform of v € CN>*N;

J-1 81

=N

N

L, =1
2

}2

_ 1 ; ;
ﬁ,&ﬂa}:m Z Z 0p, €2 TRPIN2ITIN (1) € {o,...,N-1)?
p

=5 p="
(11)
We also need to define the operator to transform cartesian coordi-
nates to polar coordinates as:
p:[-mn]? — Rx] - 7]
(|x], 7)

— (r,0) =
(r.9) x2+y2,2arctan(

(x.y)
The low-pass, high-pass and oriented filters we use are polar-
separable in the Fourier domain:

1 ifr<Z
L(r,0) =L(r) = cos(%logz(%)) ifF<r<%
r23

0 if

ify=0andx <0
Y )) otherwise
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Figure 1: Sliced-Wasserstein distance from a Gaussian point cloud to a squirrel point cloud

0 ifr<Z%
H(r,0) =H(r) = jcos(% log, (%)) ifZ<r<Z
1 if r > %
K-1 B
k-1__(K-1)! _kx e
Gi(0) = VKZ(K-1)! [COS(G ) if10-Fl<3
0 otherwise

Finally, the lowpass residual bands and oriented subbands are de-
fined as:

)

=1 ()

By (r,0) = H(r)Gi(6)

Ho(m)

Bole) Lo(w)

By(0)

Figure 2: Diagram for the steerable pyramid. Illustration
from [15]. The input image is decomposed into low and high
frequencies, and the low-pass subbands are divided into mul-
tiple oriented bandpass subbands. The image is finally re-
constructed by upsampling and multiplying by its according
filter.

The key idea to prove the previous propositions is the following:
the Fourier transform of the n-th derivative is ﬁ{aa—;,, f(x)} =
(=ik)"Fr{f(x)} (hence the power K). One can also rely on the
fact that the Fourier transform of the rotation is the rotation of the
Fourier transform F{f - R(x)} = Fr.x {f(x)} where f € L1(R) is
an arbitrary function and R is a rotation matrix. We refer to [18]
for further explanations. We display an example in figure 3.

3.2 Texture synthesis

The steerable pyramid defined in the previous subsection allows us
to perform texture synthesis. We first describe the algorithm used
for texture synthesis in Algorithm 1.

The function BuildPyr constructs the steerable pyramid shown
on the left-hand side of figure 2. The function ReconstructPyr is
employed to reconstruct the texture. It is worth mentioning that

Algorithm 1: Texture mixing

1
2

10

11

Input: {T;}], texture exemplars, {4;}]_, weights, S
number of scales, Q number of orientations, Njter
number of iterations

Output: A synthesized texture

Data: Texture ~ N'(0,I) // texture follows a Gaussian noise

fori=1,...,ndo

L Pyramids[i] = BuildPyr(T;) // pyramids for ex. textures

Barycenter = a_r:(/li, Ti)1<i<n // barycenter of ex. textures
fori=1,...,.SxQ+2do
L BarPyramids[i] = Bar(A;, Pyramids[i])i1<i<n
fori=1,..., Njter do
TexturePyramid = BuildPyr(Texture)
forj=1,...,5xQ+2do
TexturePyramid[j] =
PSW% (TexturePyramid(j], BarPyramids[j])

Texture = ReconstructPyr(TexturePyramid)

Texture = PSW% (Texture, Barycenter) // color transfer

all the projections are done on the real part of the IDFT, defined
in (11). Proceeding with the Sliced-Wasserstein distance, we also
do not need the PCA that was proposed in the original article to
do the color transfer. In practice, due to the abundance of pixels,
line 7 of Algorithm 1 can simply be the optimal assignment (4)
with the target barycenter. We will use by default S = 4 and Q = 4.
We first show some basic examples in figures and 6a and 6b. It
is important to state that during all the experiments, the quantity

T -1
[VX(,) SW2(x(®), Y))] [V;m SW2(x(®), Y)] [me sW2(x(®), )
decreases but never converges.

For now, the algorithm can synthesize texture at a high level.

However, capturing details can be difficult due to the high number of
samples since we do not take into account the correlation between
the pixels. The original article proposed using patches to enforce
coherence in close neighborhoods.

Patches: as proposed in the article, one can use patches to im-

pose a correlation between the different parts of the images. How-
ever, it is not mentioned in the article what strategy was used to
do so. Therefore, we can think of two possibilities: overlapping and
non-overlapping.

Overlapping patches: let T be the patch size, O the overlap,

«w

={1,..., NT__—%O}2 the patch domain and py (1) the k™ patch of

an image u where k € w. At each scale and orientation j, we first
define



BarPyramidPatch[j] = Bar(Ai, (pu (ui))1<wen)1<i<n Where u; is
the i image and M is the number of patches.
Then, for each iteration, similarly to Algorithm 1, we let

pr(Texture[j]) = Pswg (pr (TexturePyramid[j]), BarPyramidPatch[j])

for every patch and all scales and orientations. Since the patches
are overlapping, we reconstruct the images by averaging the over-
lapping parts with:

1
Reconstructed(x) = » —1,(k e{1,...,N}?
econstructed(x) Z o] w(K)pr(u) xe{ }
Examples can be seen in figures (7b) and (8b) with different patch
sizes.
Non-overlapping patches: the process is the same, except that the

kew

patch domain is now w = {1,..., %}2 and the reconstruction is
done patch-wise. Examples can be seen in figures (7a) and (8a)
with different patch sizes. Visually, a higher patch size helps to
capture details. Nevertheless, it is not obvious whether overlapping
helps or not. We also experiment with varying the number of scales
and orientations in figure 9 with a patch size of 8 and no overlap.
Increasing the number of scales/orientations did not seem to signif-
icantly impact the results. Finally, our results slightly differ from
the original article.

Spectrum constraint: following the work of Tartavel et al.
[19], one may be interested in matching the Fourier spectrum
of two textures. Indeed, we recall that V(k,[) € {%, el % -
14 [ F ke {u})? = F (k1) {u * u} by the convolution theorem where
¥ {u} is the DFT, introduced earlier (10). Thus, we see that |F {u}|?
encodes the correlation of an image. For this reason, they decided
that for two images u, uyer € RV*N where us is the reference
image, u could have the same phase ¢. This reads:

. Tk
3¢ € R? such that Fi ;) {u} = e’ (’)ﬁk,l){umf}

Vik 1) e {=N,... . F -1}

It has been proved that we can minimize |lu(g ;) — ”(k,l),ef”% and
keeping the same amplitude for u by setting:

Firen {u}t - Fiic) (vt} -N N

-k ’ VD) e (>, ...~

Tl tunew} = 1 e T arert] D €5
(12)

where - denotes the hermitian product. We decided to match the
spectrums when initializing the texture. We display some exam-
ples in figure 10. It is interesting to notice that the structures of
the synthesis are better organized, especially for the checkboard.
Nevertheless, it remains difficult to capture details. We can draw
a parallel between the spectrum constraint and the work of Por-
tilla et al. [20] with the auto-correlation, that was suggested at
the end of the article [1]. In this paper, they maximized the local
auto-correlation of an image to better describe the structure and
periodicity of natural textures.

Gromov-Wasserstein for cross-correlation: the cross-correlation

adjustment of the magnitudes [20] was also a characteristic of the
synthesis. The idea is to impose a correlation at different scales
of the pyramids, between the orientations. Instead, we propose to
use the Gromov-Wasserstein distance [21] that allows us to com-
pare two distributions not necessarily relying on the same metric
space. In our case, we will consider patches of same size at the

same scale but different orientations. The intuition is that for small
patches, we want to minimize the distortion between the orien-
tations. We show an example in figure 4. We use the same nota-
tions as the first section. Let X1, 22 be two geometric domains and
Cx : 21xX21 = Ry, Cy : 23 XXy — R, pairwise distances between
two points in spaces X and Y respectively. The Gromov-Wasserstein
distance of order p is defined as:

GWp((H, CX)’ (V: CY)) =

1/p
inf [ (Cx(xy) - Cy (¥, y )P dr(x, y)dn(x', )
7z€H(,u,v)Zl 5,
(13)
Since we are working with point clouds, this recasts to:
GW, ((1 Cx), (v,Cy)) = GWp(Cx, Cy) =
1/p
gmin L (Cxny) = Cr o vep)) | (19

(i,j)e{1,...N?}

where X and Y are patches. It sounds reasonable to say that for a
relatively small patch size, for instance, 8, there should not be too
much distortion between the orientations. We show the intuition
in figure 4. Let S = Q = 4 orientations and scales, the process we
are doing is the following: we choose a random orientation among
the 4 at each scale, and impose that for the 3 other ones, they must
have an optimal permutation minimizing the Gromov-Wasserstein
with the chosen one. We use POT [22] to minimize this distance
using the conditional gradient algorithm. After several attempts,
we also found that this optimal permutation should only be applied
at the coarsest scale to be beneficial. We display examples in figure
11. We chose to use the L? distance as a pairwise distance, as we
obtained similar results with a Gaussian kernel. These experiments
could be discussed and improved.

Source image Target image

Source image after transportation by
Gromov-Wasserstein

Figure 4: Gromov-Wasserstein transportation from a source
to target image (MNIST [23]). Blue arrows indicate a low
distance and red arrows a high one.



4 DISCUSSIONS AND LIMITATIONS

We did not address certain issues, such as inpainting, which in-
volves generating or reconstructing missing pixels in an image,
potentially within a contextual framework. It is important to note
that some aspects were not very clear or missing, as they were not
explicitly mentioned in the article. For example, details like the
number of projections, the iterations used for texture mixing, the
size of the images, and the strategy employed for patches were not
communicated. Finally, the article did not provide the code either,

which is a concern in today’s research, as it hinders reproducibility.

5 CONCLUSION

The Wasserstein distance has garnered significant attention from
researchers and is at the forefront of numerous studies today. For
example, one can mention the Wasserstein GAN that can produce
really interesting generations [32]. As evoked in the introduction,
more recently, image generation can be done with neural networks.
In 2020, Vacher et al. [25] introduced a deep convolutional model
leveraging natural geodesics to perform texture mixing. To con-
clude, we showed with our results that the Wasserstein distance was
a powerful tool even though it suffers from high dimensionality.
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Figure 3: Heeger-Bergen pyramid decomposition of an image. S indicates the scale and Q the orientation.
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Figure 5: Sliced-Wasserstein barycenter between 4 point clouds
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(a) Texture mixing between 4 textures

A=0.0 A=0.2 A=04 A=0.6 A=0.8 A=1.0

(b) Mixing between two textures

Figure 6: Texture mixing without any constraint



A=0.0 A=0.2 A=04 A=0.6 A=0.38 A=1.0

(b) Texture mixing with overlapping patches, (2, 2) stride with mean on the overlaps

Figure 7: Texture synthesis with patch size = 4

A=0.0 A=0.2 A=0.6 A=0.38 A=1.0

(b) Texture mixing with overlapping patches, (4, 4) stride with mean on the overlaps

Figure 8: Texture synthesis with patch size = 8
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Figure 11: Texture synthesis with patch size = 8, no overlapping, no spectrum constraint and Gromov-Wasserstein minimization
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