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1 Introduction

This project aims to present a global overview of Score-based generative models, starting from the origins of the idea behind Score-matching,
as described in the seminal work of [Hyv05] that we will describe in Section 2. After this, in Section 3, we will cover the techniques used for
sampling using the score function, i.e., Langevin dynamics as the authors in [SE19] do and explore some issues that require further analysis.
To tackle these issues, in Section 4, we will explore the ideas behind Denoising Score Matching and how the work of [Vin11] makes feasible
the use of the score for generating samples from manifold embedded in a high dimensional space. Since, at this point, all the tools have
been deployed, in Section 5, we will understand how we will use them, as we will do in our experiments in Section 7. As a last (but very
interesting) theoretical insight, we will see that following the work of [HJA20] on Diffusion models, we can see that, despite coming from
entirely different approaches, the two models aim at optimizing a similar loss function.

2 Score-matching

In many applications, we are dealing with unnormalized probability distributions and are interested in computing the normalization constant.
Unfortunately, this constant is often intractable, for instance, the space of all images. Formally, assume we have a dataset of i.i.d. samples
D = {x1, . . . , xn} ⊂ Rd = X drawn from a probability distribution pdata(x), we would like to model it with another probability distribution
p̃q(x; θ) where θ ∈ Rp is a parameter. However, since this probability distribution may still be unnormalized, we would need to compute

pq(x; θ) =
p̃q(x; θ)∫

X p̃q(x; θ)dx

that can be impractical due to the intractability of
∫
X p(x, θ)dx. If the distribution was known, one could maximize the log-likelihood. Some

previous works focused on estimating this constant ([Mac03]) In machine learning applications, we also frequently work with a finite set
of observed data samples, leading to an approximation of this distribution. The choice of the model to represent probability distributions
can also be implicit with GAN [GPAM+14], for example, where we learn the sampling process. It can also be explicit with models such
as Bayesian networks [Mac92], Markov random fields [Li09], or diffusion models [HJA20] where a part of the probability distribution is
learned from the data.

In this study, we will focus on the Stein score of a probability distribution given by∇x log pdata(x); we thus wish to estimate∇x log pq(x; θ),
which does not depend on the normalization constant. Finally, one would compute

θ∗ ∈ argmin
θ

L(θ) = argmin
θ

Epdata(∥∇x log pq(x; θ)−∇x log pdata(x)∥
2
2) (1)

where L(θ), under some regularity conditions (see [Hyv05], Theorem 1), can be shown to be:

L(θ) = Epdata

(
Tr(∇2

xpq(x; θ)) +
1

2
∥∇x log pq(x; θ)∥22

)
+

constant︷ ︸︸ ︷
Epdata(∥∇x log pdata∥

2
2) (2)

where the second term appears as a constant since it does not depend on θ.

Finally, according to Theorem 2 of [Hyv05], we remind the following proposition:

Proposition 1 Let θ∗ be such that pq(x; θ∗) = pdata(x). Assume further that no other parameter value gives a pdf that is equal to pq(x; θ∗),
and that p̃q(x; θ) > 0 for all x, θ. We then have:

θ = θ∗ ⇐⇒ L(θ) = 0 (3)

∗All the authors contributed equally.



3 Langevin dynamics for Generative Modelling

Since the score is a vector field pointing in the direction where the log data density grows the most, the main idea is that following it can lead
from a white noise image to one lying on the dataset manifold: the support of the probability density pdata(x) related to our dataset. To find
this path, we use Langevin dynamics:

Ẋt =
1

2
∇ log pdata(Xt) + Ẇt (4)

where W is a Brownian motion. This particular Itô diffusion process can be proved to have as a solution a process Xt whose density ρt(X)
(obtained solving the related Fokker-Planck equation) converges to pdata(Xt) as t→∞.

Informally, the Langevin dynamics drive the random walk towards high-probability regions in the manner of a gradient flow. This evolution is
suited to our model since it can produce samples from a probability density pdata(x) requiring only its score function. In practice, discretizing
4 with the standard Euler–Maruyama method [BPB18], given a fixed step size ϵ > 0, and an initial value x̃0 ∼ π(x) with π being a prior
distribution, we have:

x̃t = x̃t−1 +
ϵ

2
∇x log pdata(x̃t−1) +

√
ϵzt (5)

where zt ∼ N (0, I). So, it can be proved that for ϵ→ 0 and T →∞, we have an actual sample form pdata(x) (similar results prove that the
error committed when T <∞ is small, ensuring that an actual algorithm can be run, as can be seen in [RR98]).

Given a dataset consisting of i.i.d. samples D = {x1, . . . , xn} ⊂ Rd, what we aim to do is to train a neural network sθ : Rd → Rd
parametrized by θ, called Score Network. It will learn to approximate the score of the dataset probability density pdata(x) so that sθ(x) ≃
∇x log pdata(x) (i.e. when θ ≃ θ∗ as seen in Proposition 1). Then, we will use this network to produce samples following the Langevin
dynamics.

3.1 Challenges and solutions of the Score-based approach

The technique proposed above has to face various issues; they are The manifold hypothesis and the Low data density regions.

3.1.1 The manifold hypothesis

The manifold hypothesis says that data in the real world tend to concentrate on low-dimensional manifolds embedded in a high-dimensional
space. Let us think, for example, of the well-known MNIST dataset; it is clear that the manifold on which all the possible hand-written digits
can lie is much smaller than the 28× 28 dimensional space in which they are embedded (for example, the pixels on the border will always be
black, so these constraints reduce by a lot the dimensions).

Under this hypothesis, the two main problems are the following:

• Since the score∇x log pdata(x) is a gradient taken in the ambient space, it is undefined when x is outside the manifold (i.e., the
support).

• Proposition 1 in Section 2 can be applied only when the support of the data distribution is the whole space. Without it, we will not
have any theoretical support for our network to approximate the score function.

3.1.2 Low data density regions

Recall from Section 2 that score matching minimizes the expected squared error of the score estimates,

1

2
Epdata

[
∥∇θ log pθ(x)−∇x log pdata(x)∥22

]
.

where the expectation w.r.t. the data distribution is always estimated using i.i.d. samples D = {x1, . . . , xn} ∼ pdata(x). Consider now
any regionR ⊂ Rd such that pdata(R) ≈ 0. In most cases, {x1, . . . , xn} ∩R = ∅, so the main issue is that score matching will not have
sufficient data samples to estimate∇x log pdata(x) accurately for x ∈ R.

Furthermore, consider the case in which a low-density region separates two high-density ones, like in the case of a bi-modal distribution
pdata(x) = πp1(x)+(1−π)p2(x), where p1(x) and p2(x) are normalized distributions with disjoint supports, and π ∈ (0, 1). In the support
of p1(x), we have ∇x log pdata(x) = ∇x(log π + log p1(x)) = ∇x log p1(x), and in the support of p2(x), we have ∇x log pdata(x) =
∇x(log(1− π) + log p2(x)) = ∇x log p2(x). In either case, the score∇x log pdata(x) does not depend on π. As Langevin dynamics use
∇x log pdata(x) to sample from pdata(x), the samples obtained will not depend on π, i.e., they will not reflect correctly the true distribution.

3.1.3 Solution

The idea exploited in [SE19] is to perturb the data distribution with a Gaussian noise qσ(x̃|x) = 1

(2π)d/2σd e
− 1

2σ2 ||x̃−x||2 and then to employ
score matching to estimate the score of the perturbed data distribution

qσ(x̃) :=

∫
qσ(x̃ | x) pdata(x) dx. (6)

In the next section, we will explain how this idea can be used in practice and see its theoretical foundations. Now, let us see why this solves
the problems stated above.
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Since the Gaussian noise is isotropic, the support of the perturbed distribution will be the whole space, ensuring the applicability of Proposition
1 and thus solving both issues related to the manifold hypothesis. Furthermore, with big enough σ, we can produce samples in low-density
regions of the original (unperturbed) data distribution, solving the first issue related to the low data density regions. We will see that the
second issue is solved by simultaneously learning a score function for different noise levels. In this way, we can recover information by
sampling in low-density regions using the Langevin dynamics with large σ values, and then, as t grows, use small σ to recover the precise
data distribution.

4 Denoising Score Matching

Drawing from [Vin11] and [SE19], this section explores the intersection of Denoising Autoencoders (DAEs) and Score Matching (SM), using
the notation that two loss functions J1 and J2 are equivalent (J1 ⌣ J2) if they differ by scaling and a constant term.

4.1 Score Matching with Perturbed Density

We defined qσ(x̃) in (6) as the perturbed, smooth version of our data distribution, also called the Parzen windows density estimator. Our
objective is to align the parametrized score estimator ψ(x; θ) with the score of qσ(x̃), formalized as:

JESMqσ (θ) = Eqσ(x̃)

[
1

2

∥∥∥∥ψ(x̃; θ)− ∂ log qσ(x̃)

∂x̃

∥∥∥∥2
]
, (7)

which aligns with JISMqσ under the regularity conditions specified in Theorem 1 of [Hyv05] (which gives (2)). However, this equivalence
breaks as σ → 0.

4.2 Denoising Score Matching (DSM)

As explored in [Vin11], we consider the denoising version of a simple classical autoencoder that employs a single sigmoidal hidden layer. The
model assumes that data points originate from a continuous real-valued distribution, and thus, a linear decoder with a squared reconstruction
loss is used. Tied weights are employed, where the encoder and decoder share the same linear transformation parameters. The corruption is
introduced as additive isotropic Gaussian noise (details in Appendix B). In the end, the loss can be written as:

JDAEσ(θ) = Eqσ(x̃,x)

[
∥decode(encode(x̃))− x∥2

]
= Eqσ(x̃,x)

[
∥WT sigmoid(Wx̃+ b) + c− x∥2

]
.

Merging concepts from DAEs and SM, DSM uses pairs of clean and corrupted samples (x, x̃). The DSM objective is to approximate the
score of the conditional density qσ(x̃ | x), leading to the objective:

JDSMqσ (θ) = Eqσ(x̃,x)

[
1

2

∥∥∥∥ψ(x̃; θ)− ∂ log qσ(x̃ | x)
∂x̃

∥∥∥∥2
]
. (8)

The core idea is to follow the gradient ψ towards the clean sample x, with ∂ log qσ(x̃|x)
∂x̃

guiding this process. Most importantly, this alternate
objective is equivalent to explicit score matching. Formally,

JESMqσ ⌣ JDSMqσ .

The proof made by [Vin11] only requires that log qσ(x̃ | x) is differentiable with respect to x̃, and the Gaussian kernel satisfies this condition.

Using the perturbed distribution qσ as in JESMqσ ensures convergence of the score to ∂ log qσ(x̃|x)
∂x̃

= 1
σ2 (x− x̃) that guarantees that we

are moving towards the actual sample x. This is why the idea exposed in Paragraph 3.1.3, in addition to solving the problems seen, still
guarantees that the learned score will tend to move points to the real data distribution (like if we are climbing the Gaussians hills towards the
actual x). However, this is not the only benefit this method has; we will now see an implementation issue not considered before that DSM can
solve, the so-called scalability issue.

It is important, indeed, to highlight the fact that computing
∑d
i=1

∂ψi(x̃;θ)
∂x̃i

becomes pretty hard when the data dimension is high and the
neural network very deep. This makes JISMqσ no more suitable to our purposes. Luckily, JDSMqσ does not suffer from this issue; indeed,
it is straightforward to compute thanks to the special form of ∂ log qσ(x̃|x)

∂x̃
. Thus, we have to optimize JDSMqσ in practical applications,

exploiting the equivalence:
JDSMqσ ⌣ JISMqσ ⌣ JESMqσ . (9)

5 NCSN model

To apply the ideas seen up to now, we will describe the NCSN (Noise Conditional Score Network) model introduced by [SE19]. The objective
is to add noise to the data and be able to recover samples for the original distribution afterwards. In order to do so, we can use different noise
levels, denoted as σ1, . . . , σL with L > 0. We will discuss how to choose these values later. For each noise level, we aim to approximate
∇x log qσ(x) with a neural network, where the authors chose a U-Net architecture [RFB15] with dilated convolutions [YK15], that we will
call sθ(x, σ). In later experiments, the authors discovered that it is enough to rescale by σ a single unconditional network sθ(x)

σ
[SE20],

instead of training an architecture for each noise level.
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In practice, once the noise levels are defined, we select uniformly at each iteration of the learning procedure a random number between 1 and
L and run a step of stochastic gradient descent on sθ(x, σ). This yields to compute the DSM loss seen in 8:

ℓ(θ;σ) :=
1

2
Epdata(x)Ex̃∼N(x,σ2I)

[∥∥∥∥sθ(x̃, σ) + x̃− x
σ2

∥∥∥∥2
2

]
.

After training the NCSN, we can use it for sampling through the
already-seen Langevin dynamics, with the only caveat that we must
be able to use the various scores learned, going from the initial high
noise to the last low one. We will use the following algorithm, called
Annealed Langevin Dynamics (since it is inspired by the Annealed
Importance Sampling technique). The heuristic behind this is that
we are allowing the first steps to move the generated sample on the
noise-expanded manifold, trying to push it toward the higher-density
regions. In this way, independently from the starting point, it should
be able to be moved to any portion of the manifold. Gradually, this
noise decreases, allowing the sample to get closer to the original
manifold. In the end, x̃T will be a sample that comes from the last
distribution, which has almost zero noise, and thus, it should be a
valid sample that belongs to the dataset manifold.

Algorithm 1 Annealed Langevin Dynamics

Require: {σi}Li=1, ϵ, T
1: Initialize x̃0
2: for i← 1 to L do
3: αi ← ϵ

σ2
i

σ2
L

▷ αi is the step size
4: for t← 1 to T do
5: Draw zt ∼ N (0, I)
6: x̃t ← x̃t−1 +

αi
2
sθ(x̃t−1, σi) +

√
αizt

7: end for
8: x̃0 ← x̃T
9: end for

10: return x̃T

6 Connection between diffusion models and score-matching

Applying score-matching at a given noise will naturally not cover all the regions, resulting in improper Langevin dynamics in low-density
areas. The solution that was proposed is the injection of noise into the data, which provides an additional training signal. Song et al.
[SSDK+20] introduce the major step which involves perturbing the data using a diffusion process which is a form of a stochastic differential
equation (SDEs). The SDE is then reversed using annealed Langevin dynamics leading to a generative process, where the reverse process
makes use of score matching.

Diffusion models: diffusion models operate on the principle of transforming data through a series of learned Gaussian transitions starting
from p(xT ) = N (xT ; 0; I), forming a Markov chain known as the reverse process. This process is represented as:

pθ(x0:T ) := p(xT )

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) := N (xt−1;µθ(xt, t),Σθ(xt, t))

Forward process: the forward process in diffusion models, denoted as q(x1:T |x0), is also a Markov chain. It is defined by adding Gaussian
noise to the data over time, following a variance schedule β1, . . . , βT :

q(x1:T |x0) :=
T∏
t=1

q(xt|xt−1), q(xt|xt−1) := N (xt; (1− βt)xt−1, βtI)

This recursive formulation allows direct sampling of xt, with t an arbitrary timestep
q(xt|x0) = N (xt;

√
ᾱtx0, (1− ᾱt)I)

where ᾱt =
∏t
i=1 αi and αt = 1− βt, which shows that we can sample any noisy version xt within a single step, with a fixed variance βt.

Sampling from q(xt|x0) is performed via the reparametrization trick. Let x ∼ N (µ, σ2I), we first z-score z by setting z̃ = x−µ
σ

, where
z̃ ∼ N (0, I). The inverse of this normalization yields x from z̃ by scaling by σ and shifting by µ. In this context, the process gives:

xt =
√
ᾱtx0 +

√
1− ᾱtz̃t,

where z̃t ∼ N (0, I).

Reverse process: to generate new instances from p(x0), we start from xT ∼ N (0, I) and reverse the process using p(xt−1|xt) =
N (xt−1;µ(xt, t),Σ(xt, t)). A neural network pθ(xt−1|xt) is trained to emulate this, predicting mean µθ(xt, t) and covariance Σθ(xt, t)
from the perturbed image xt at timestep t.

Directly maximizing pθ(x0) for each x0 is infeasible due to the complexity of aggregating all reverse trajectories. Instead, we minimize the
variational lower bound on the negative log-likelihood to effectively train the network.

The training optimizes the variational lower-bound on negative log-likelihood:

Lvlb = − log pθ(x0|x1) + KL (p(xT |x0) ∥ π(xT )) +
∑
t>1

KL (p(xt−1|xt, x0) ∥ pθ(xt−1|xt)) , (10)

focusing on the closeness of pθ(xt−1|xt) to the true posterior of the forward process.

Ho et al. [HJA20] propose a specific parameterization for µθ(xt, t), leading to:

µθ(xt, t) =
1√
αt
xt −

√
βt

1− ᾱt
ϵθ(xt, t). (11)

The simplified objective for denoising score matching becomes:
Lsimple = Et∼U([1,T ])Ex0∼p(x0)Eϵ∼N (0,I)(∥ϵ− ϵθ(xt, t)∥2), (12)

where the network predicts noise, and the mean is defined as in the equation, while covariance is fixed.
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7 Experiments

In this section, we conduct experiments exploring different combinations of hyperparameters and stressing the limits of [SE19] model. We
used the same optimizer and learning rates as the original paper throughout all the experiments in this section. We also flip randomly the data
when training.
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Figure 1: Evolution of σ with different schedulers

Scheduler FID

Geometric 43.33
Linear 70.97
Cosine 130.70

Squared cosine 40.44
Sigmoid 32.46

Figure 2: MNIST

Scheduler FID

Geometric 34.72
Linear 79.09
Cosine 130.63

Squared cosine 66.38
Sigmoid 47.99

Figure 3: CIFAR-10

Figure 4: FID scores on MNIST and CIFAR-10 with
different schedulers

Noise scale: As mentioned in section 5, the authors decided to perturb the data
by employing different values of σ to mitigate the impact of the manifold hy-
pothesis described in section 3.1. They chose to use a geometric sequence
{σk = σ0r

k}L−1
k=0 with |r| < 1. In a later article [SE20], they explained the

theoretical motivations for this choice. Nevertheless, in most recent articles, such
as the work by Nichol et al. [ND21] on diffusion models, they proposed to use
a cosine scheduler instead. It is important to mention that the models are nonethe-
less different, we use a Noise Conditional Score Network (NCSN), and they use
a diffusion model, described in section 6. We explore different sequences and
explain our motivations subsequently. The schedulers are: a linear sequence, a
cosine sequence, a squared cosine sequence, and a sigmoid sequence, shown in
figure 1. We define them as follows:

- linear scheduler {σk = σ0 − kr}L−1
k=0

- cosine scheduler {σk = σ0 cos(
k
αL
· π

2
)}L−1
k=0 where α, similarly to [ND21], is

a parameter that prevents the noise to get too close to 0, we choose α = 1.0064.

- squared cosine scheduler {σk = σ0 cos(
k
αL
· π

2
)2}L−1

k=0 , where α = 1.068

- sigmoid scheduler {σk = −1
1+exp (−k−α) + β}L−1

k=0 , where α = 2.5 and β =

1.009

We train and test our results on the MNIST and CIFAR-10 [LLWT15] datasets.
We let L = 10 with σ0 = 1 and σ9 = 0.01 like in the original article. We also
use annealed Langevin dynamics with T = 100 and ϵ = 2× 10−5. To assess the
quality of our generated samples, we employ the Fréchet Inception Distance (FID)
introduced by Heusel et al. [HRU+17]. Taking an Inception trained on ImageNet
[SVI+16], the generated samples are fed into the network, and subsequently,
the features of the final layer, treated as multivariate Gaussians, are compared
using the Wasserstein-2 distance against real samples. The Wasserstein-2 distance
between two multivariate normal distributionsN (µ1,Σ1),N (µ2,Σ2) is:
W 2

2 (N (µ1,Σ1),N (µ2,Σ2)) =

∥µ1 − µ2∥22 + Tr(Σ1) + Tr(Σ1)− 2 · Tr
(
(Σ

1/2
2 Σ1Σ

1/2
2 )1/2

)
(FID)

We follow the strategy used by Song et al., generating 1000 samples at each iteration and computing the corresponding FID. Given the lowest
FID among all the iterations, we compute the FID again on 10000 samples and report the results in tables 2 and 3. The generation can be seen
in figures 9 and 10.

One can notice that the FID score we obtained for the geometric sequence on CIFAR-10 is higher than the FID provided in the paper (25.32).
This may be explained by the randomness of the generated samples and actual samples used. However, this still gives us a benchmark to
compare the schedulers.

Theoretical guidance: following the improved techniques paper, the goal is to ensure that there is enough training data points spread in the
high-density regions of the previous scales. We remind the second proposition of the paper.

Proposition 2 Let xi ∈ Rd ∼ N (0, σ2
i I) and ri = ∥xi∥2, then ri = Xi ≈ N (

√
dσi, σ

2
i /2).

With this proposition, the goal is to make samples from Xi to be in the range Ii−1 = [
√
dσi−1 − 3 · σi−1√

2
,
√
dσi−1 +3 · σi−1√

2
] to make sure

they are covered in the previous density region. To do so, we want:

P(Xi ∈ Ii−1) = P
(√

dσi−1 − 3 · σi−1√
2
≤ Xi ≤

√
dσi−1 + 3 · σi−1√

2

)
= P

(√
d(σi−1 − σi)− 3 · σi−1√

2

σi/
√
2

≤ Xi −
√
dσi

σi/
√
2
≤

√
d(σi−1 − σi) + 3 · σi−1√

2

σi
√
2

)
= P

(√
2d(γi − 1)− 3 · γi ≤ Z ≤

√
2d(γi − 1) + 3 · γi

)
Z ∼ N (0, 1)

= ϕ(
√
2d(γi − 1) + 3 · γi)− ϕ(

√
2d(γi − 1)− 3 · γi) ≥ C ϕ(·) is the CDF of Z

where γi =
σi−1

σi
and C > 0 to be as maximum as possible. However, as the dimension d grows, the number of noise scales L should

grow as well to keep a suitable C, which can be computationally expensive. From now on, we shift the indices of the sequences by one and
denote σ0 by σ1 and σL−1 by σL. Going back to an example, with images of size 32× 32× 3, using a geometric sequence with σ1 = 1,
σL = 0.01, and L = 10, yields P (Xi ∈ Ii−1) ≈ 0 ∀i ∈ {2, . . . , L} since γ2 = · · · = γL. Driven by this theory, we tried different
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sequences. Our first experiments were such that γ2 < · · · < γL with the linear and cosine sequence to get a higher C in the early steps.
Indeed, let γk = σk

σk+1
, we get for a linear sequence of the form σk = σ1 − kr, γk = 1 + r

σ1−kr−r
, that is a strictly increasing sequence as

the derivative w.r.t. k is γ′
k = r2

(rk−σ1+r)2
> 0. Similarly, let σk = σ1 cos(k/L · π2 ), it is a strictly increasing sequence as the derivative w.r.t.

k, γ′
k =

σ1 sin( π
2L

)

2L cos(
π(k+1)

2L
)2
> 0. The squared cosine sequence is also a strictly increasing sequence as γi > 0 ∀i ∈ {2, . . . , L}. We expected

distant regions from the original distribution to require more samples than the ones near high-density regions (i.e., low σ). However, due to
the high dimensionality, a certain quantity of noise is still required near the training data points.

Besides that, we tried a sigmoid sequence of the form σk = −1
1+e−x−α+β

where γk = 1+e−x−1−α+β
1+e−x−α+β

with its derivative γ′
k ∝ −(e2k − β)

that is first positive until k > log(β)/2 and then negative. By establishing such a sequence, our expectations were such that in the early and
last steps, we would need more data points. In the first steps, as previously discussed, we believe that an increased number of samples is
beneficial, while in the last steps, this could lead to more accurate generations. In the intermediate steps, we would expect the presence of
sufficiently robust gradients. Although we can achieve better performances with the sigmoid scheduler on MNIST, this is not the case when
the dimension increases with CIFAR.

Scheduler FID

Geometric 9.65
Squared cosine 220.42

Sigmoid 22.69

Figure 5: MNIST

Scheduler FID

Geometric 40.05
Squared cosine 305.74

Sigmoid 47.59

Figure 6: CIFAR-10

Figure 7: FID scores on MNIST and CIFAR-10 with
different schedulers with σ1 = 30 and σ1 = 50 respec-
tively

Initial noise: our experiments aim to understand the importance of the initial
noise for obtaining good samples, especially concerning the distribution among
the different classes. Following the issue raised in Section 3.1, some areas may
not be well covered if the noise is not strong enough. For this reason, we tried
to change the initial noise value σ1 to 30 and increase the number of scales to
L = 200. We show our results in figures 11 and 12.

Despite their visual similarities, we observe that the distributions of these two
configurations vary (see histograms 13 and 14) 2.

It is clear that the initial noise value can help to make the distribution more
uniform. Indeed, by setting σ1 = 1, none of the classes reaches 10% in its
confidence interval, while by setting σ1 = 30, 8 of them managed to do so. Our
intuition to explain the results from figure 13 is that some numbers get clustered together (i.e. 6 and 8) while some may be alone (i.e. 1)
hence, the need to add more noise to cover these regions.

Using L = 200, we also experimented with generating samples from CIFAR-10 with an initial noise value of σ1 = 30 in table 6. However,
no discernible improvements were observed as can be seen in table 3. This is probably due to the model not being able to capture more
information.

Scheduler FID

Geometric 26.35

Sigmoid 51.31

Figure 8: FID scores on the Stan-
ford cars dataset with σ1 = 50

Additional dataset: finally, we tried to generate images with another dataset that has less variability. The
Stanford cars dataset contains 8144 images of cars that we resized to 32× 32. We only kept the geometric
and sigmoid noise schedules as they were the most promising in the previous sections. The number of
scales is still L = 200 with σ1 = 50 and σ200 = 0.01. We report our results in table 8.

8 Conclusion

In this work, we have seen a powerful technique to generate images leveraging score matching and
Langevin dynamics. We made a link with diffusion models that are considered state-of-the-art. Finally,
we tried different combinations of hyperparameters. This work has been a precursor to many techniques
used nowadays in generative AI.

2The label for each digit was obtained by a 3 layers-CNN with 99.5% accuracy on the MNIST test dataset.
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9 Appendix A

9.1 Image generation with different noise schedulers

Geometric sequence

Linear sequence

Cosine sequence

Squared cosine sequence

Sigmoid sequence

Figure 9: Intermediate samples of annealed Langevin dynamics with
different schedulers on MNIST

Geometric sequence

Linear sequence

Cosine sequence

Squared cosine sequence

Sigmoid sequence

Figure 10: Intermediate samples of annealed Langevin dynamics with
different schedulers on CIFAR
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9.2 Initial noise on the MNIST dataset

Figure 11: Samples generated with
σ1 = 1

Figure 12: Samples generated with
σ1 = 30
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Figure 13: Distribution of the digits with σ1 = 1
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Figure 14: Distribution of the digits with σ1 = 30

9.3 Image generation with the Stanford car dataset

Figure 15: Samples obtained after 100k steps with the geometric
sequence

Figure 16: Samples obtained after 100k steps with the sigmoid
sequence

10 Appendix B

10.1 DAE architecture

We explore here in detail the DAE architecture used by [Vin11] to establish the equivalence between DAEs and DSM.

The architecture is outlined as follows:

• Corruption: A training input x is corrupted by additive Gaussian noise with covariance σ2I, resulting in a corrupted input
x̃ = x+ ϵ, where ϵ ∼ N

(
0, σ2I

)
. The corresponding conditional density is qσ(x̃ | x).

9



• Encoding: The corrupted version x̃ is encoded into a hidden representation h using an affine mapping followed by a sigmoid
nonlinearity: h = sigmoid(Wx̃+ b), where W is a dh × d matrix, b ∈ Rdh .

• Decoding: The hidden representation h is decoded into the reconstruction xr through an affine mapping: xr = WTh+ c, where
c ∈ Rd.

• Objective Function: The parameters θ = {W,b, c} are optimized to minimize the expected squared reconstruction error, given
by the objective function JDAEσ(θ):

JDAEσ(θ) = Eqσ(x̃,x)

[
∥decode(encode(x̃))− x∥2

]
= Eqσ(x̃,x)

[
∥WT sigmoid(Wx̃+ b) + c− x∥2

]
. (13)

10.2 Equivalence between DAEs and DSM

Denoising Score Matching can be efficiently used when Score Matching is applied to large datasets, solving the problems related to the
manifold hypothesis. In this section, we will briefly investigate other interesting properties of DSM that make it equivalent to a Denoising
Autoencoder when we choose a specific energy function, the Gaussian Parzen kernel, and we use the DAEs’s shape as in 13.

10.2.1 The choice of the energy function

Let us start with the choice for the model p, which has the form of a Gibbs measure:

p(x; θ) =
1

Z(θ)
exp(−E(x; θ))

E(x;W,b, c︸ ︷︷ ︸
θ

) = −
⟨c,x⟩ − 1

2
∥x∥2 +

∑dh
j=1 softplus (⟨Wj ,x⟩+ bj)

σ2
.

This specific energy function has been designed to be related to the reconstruction error in DAEs. We thus recover the score:

ψi(x; θ) =
∂ log p(x; θ)

∂xi

= − ∂E
∂xi

=
1

σ2

(
ci − xi +

dh∑
j=1

softplus′ (⟨Wj ,x⟩+ bj)
∂ (⟨Wj ,x⟩+ bj)

∂xi

)

=
1

σ2

(
ci − xi +

dh∑
j=1

sigmoid (⟨Wj ,x⟩+ bj)Wji

)

=
1

σ2
(ci − xi + ⟨W·i, sigmoid(Wx+ b)⟩)

which we can write as a single equation

ψ(x; θ) =
1

σ2

(
WT sigmoid(Wx+ b) + c− x

)
.

Now, recalling the equation for JDSMqσ seen in 8 and substituting the formulas for ψi(x; θ) and ∂ log qσ(x̃|x)
∂x̃

, we obtain:

JDSMqσ (θ) = Eqσ(x,x̃)

[
1

2

∥∥∥∥ψ(x̃; θ)− ∂ log qσ(x̃ | x)
∂x̃

∥∥∥∥2
]

= Eqσ(x,x̃)

[
1

2

∥∥∥∥ 1

σ2

(
WT sigmoid(Wx̃+ b) + c− x̃

)
− 1

σ2
(x− x̃)

∥∥∥∥2
]

=
1

2σ4
Eqσ(x,x̃)

[∥∥∥WT sigmoid(Wx̃+ b) + c− x
∥∥∥2]

=
1

2σ4
JDAEσ(θ).

From these relationships, we obtain that

JDSMqσ ⌣ JDAEσ.
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10.2.2 Implications of the link between DAEs and DSM

The equivalence of DAEs and DSM in certain conditions implies that learning to denoise data in DAEs can be viewed as learning the score
of the data distribution, as done in DSM. This creates a unified framework for understanding how these models learn and represent data
distributions. Before this connection was established, DAEs were primarily understood as feature extraction and dimensionality reduction
tools without a clear understanding of how they model the data distribution. The linkage with DSM provides a theoretical foundation
explaining how DAEs capture and learn the underlying data distribution, enhancing our understanding of their functioning.

10.3 Stochastic Differential Equations

The concept of a finite number of noise scales can be expanded to an infinite, continuous range. The diffusion process, considered to be a
continuous process, becomes a solution of a stochastic differential equation. It was shown in [And82] that the reverse process of this diffusion
can be modeled as a reverse-time SDE, which requires the score function of the density at each time step. Hence, the SDE of the forward
process {xt}Tt=0, is given by:

∂x

∂t
= f(x, t) + σ(t) · ωt ⇐⇒ ∂x = f(x, t) · ∂t+ σ(t) · ∂ω,

The drift coefficient, f , aims to gradually eliminate the data x0, while the diffusion coefficient, σ(t), characterizes the stochastic aspect of the
SDE, defining the intensity of the noise infusion over time.

The corresponding reverse-time SDE is:

∂x =
(
f(x, t)− σ(t)2 · ∇x log pt(x)

)
· ∂t+ σ(t) · ∂ω,

where ω represents the Brownian motion in reverse time, from T to 0. This SDE illustrates that starting with pure noise, data can be recovered
by counteracting the drift responsible for the data destruction through the subtraction of σ(t)2 · ∇x log pt(x).

The neural network sθ(x, t) ≈ ∇x log pt(x) is trained by optimizing the continuous case equivalent of the objective:

L∗
dsm = Et

[
λ(t)Ep(x0)Ept(xt|x0)

[
∥sθ(xt, t)−∇xt log pt(xt|x0)∥

2
2

]]
,

where λ is a weighting function, and t ∼ U([0, T ]). It is noted that when f is affine, pt(xt|x0) is Gaussian. For non-affine f , alternatives
like sliced score matching [SGSE20] are used.
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