
Supervised Research

Antoine Ratouchniak
Supervisor : Enric Meinhardt-Llopis

April - May 2022

Remerciements

Je remercie Enric Meinhardt-Llopis qui m’a accompagné durant ce TER et pour le temps
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1 Introduction

Kernels play an important role in image processing and computer vision. They are ubiquitous
in our daily lifes, and have many applications such as feature extraction or photomontage. In
this work we will focus on Land’s kernel [1] and its interesting properties. To do so, we will first
study the kernel mathematically in particular in the sense of distributions [5] which will allow us to
implement it in the Fourier domain. We will also introduce some properties of image editing like
rotation, zoom and translation. Then, we will review some applications of the kernel such that its
Laplacian allows to solve Poisson’s equation [2], used in image processing for editing, segmentation,
noise reduction or reconstruction... One other application is the Multiscale Retinex which aims to
reconstruct a more illuminated image from a given image. It can also work with Land’s kernel as
Land proposed to use a singular radial kernel C

x2+y2 where C is a constant [3]. Finally, we will try

to implement a U-Net [6] capable of applying Land’s filter in less time. Indeed, as we are working
with images, we will be able to use the GPU which performs well and will most likely be faster than
using the traditional Fast Fourier Transform. This could lead to real-time editing for 4K videos by
solving Poisson’s equation [2]. Nevertheless, applying Land’s filter with the U-Net will be a difficult
problem, this is why we will try to deconstruct it as a sum of Gaussians [7] and [8].

2 Definitions and properties

2.1 Definitions

Definition 1. We define Riesz-Shepard-Land’s kernel [1]

k : R2 → R (1)

(x, y) 7→ 1√
x2 + y2

(2)
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Figure 1: Graph of Land’s Kernel

Proposition 1. The function k(x, y) is C∞(R2 \ (0, 0)) and locally integrable on R2.

Proof. The function k is C∞(R2 \(0, 0)) as a composition of C∞ functions but not defined on (0, 0).
Let B(0,d) = {(x, y) ∈ R2 | x2 + y2 ≤ d} be a closed ball centred at the origin of R2. By getting in
terms of polar coordinates and setting (x, y) = (rcos(θ), rsin(θ)), we get∫

B(0,d)

1√
x2+y2

dxdy =
∫ 2π

0

∫ d

0
1√
r2
rdrdθ = 2πd < ∞.

Property 1. Let f : Rn → R be continuous, bounded by M ∈ R and g ∈ L1
loc(Rn) then we can

define the convolution product f ∗ g which is also continuous.

Proof. ∥f ∗ g∥1 ≤ ∥f∥1∥g∥1 ≤ M∥g∥1

Definition 2. The function f : Rn → R is σ-homogeneous if ∀x ∈ Rn, ∀λ ∈ R f(λx) = λσf(x).

Proposition 2. The function k(x, y) defined in the equation above (2) is positive (-1)-homogenous.

Proof. k(λ(x, y)) = 1√
λ2(x2+y2)

= |λ|−1 1
x2+y2 = |λ|−1k(x, y).

We can also look at what happens to the Fourier Transform of a σ-homogeneous function.

Definition 3. Let f ∈ L1(Rn) and x ∈ Rn. We can define the Fourier Transform of f as f̂ , ∀ξ ∈
Rn

f̂(ξ) =
1

(2π)n

∫
Rn

f(x)e−iξ·xdx (3)

Property 2. Let f ∈ L1(Rn) be a σ-homogeneous function. Then, f̂ exists and is (−σ − n)-
homogeneous.

Proof. Let x, ξ ∈ Rn and λ ∈ R. Then, f̂(λ · ξ) = 1
(2π)n

∫
Rn f(x)e−iλxT ·ξdx setting u = λxT , by

using the σ-homogeneity we have 1
(2π)n

∫
Rn

1
λn f(

u
λ )e

−iu·ξdu = λ−σ−nf̂(ξ).
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Property 3. ∆k(x, y) = k(x, y)3

Proof. ∂
∂xk(x, y) =

−x
(x2+y2)3/2

∂
∂yk(x, y) =

−y
(x2+y2)3/2

∂2

∂x2 k(x, y) =
−(x2+y2)3/2+3x2

√
x2+y2

(x2+y2)3 = 3x2

(x2+y2)5/2
− 1

(x2+y2)3/2

∂2

∂y2 k(x, y) =
−(x2+y2)3/2+3y2

√
x2+y2

(x2+y2)3 = 3y2

(x2+y2)5/2
− 1

(x2+y2)3/2

Hence ∆k(x, y) = ∂2

∂x2 k(x, y) +
∂2

∂y2 k(x, y) =
3(x2+y2)

(x2+y2)5/2
− 2

(x+y)3/2
= 1

(x+y)3/2
= k(x, y)3.

2.2 Zooms and rotations

Now we could wonder what would happen if we tried to rotate our image. In this subsection, we
consider a 2D square of size m, f ∈ L1([−m;m]2) and R ∈ SO(R2), a rotation matrix. A rotation
on an image is defined as follow, f ′ = R◦f where f ′ is the rotated image. If θ ∈ [0, π[, the resulting
new size is 2 ·m · (cos(θ)+ sin(θ)). Indeed, as the rotated image remains a square, we have that its
size is always |m(cos(θ) + sin(θ))− (−m)(cos(θ) + sin(θ))| by periodicity.

Figure 2: Rotation of an image

Property 4. Let f ∈ L1(R2), R a rotation matrix. Then f̂ ◦R = f̂ ◦R.

Proof. Let x = (x, y) ∈ R2,u = (u, v) ∈ R2 and ξ = (ξ, η) ∈ R2. f̂ ◦R(ξ) = 1
(2π)2

∫
R2 f(R · x) ·

e−ixT ξdxdy, setting u = R · x, we have x = R−1 · u = RT · u since R−1 = RT . We can compute

the Jacobian matrix Ju(x) =

(
∂
∂u (ucos(θ) + vsin(θ)) ∂

∂v (ucos(θ) + vsin(θ))
∂
∂u (vcos(θ)− usin(θ)) ∂

∂v (vcos(θ)− usin(θ))

)
= RT .

Then, f̂ ◦R(ξ) = 1
(2π)2

∫
R2 f(u) · e−i(RT ·u)T ξ|R|dudv = 1

(2π)2

∫
R2 f(u) · e−iuT ·Rξdudv = f̂(R · ξ)

because |R| = |RT | = 1 and R is a bijection.

We remind R =

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
, its inverse R−1 = 1

cos(θ)2+sin(θ)2

(
cos(θ) sin(θ)
−sin(θ) cos(θ)

)
= RT .

We can also want to zoom-in or zoom-out on the image.
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Property 5. Let Zt(f)(x) = f(x/t) be the zoom operator. Then, ̂Zt(f)(x)(ξ, η) = t2f̂(t(ξ, η)) =

t2Zt−1(f̂)(x)(t(ξ, η)). In the case of a homogeneous function, we have ̂Zt(f)(x)(ξ, η) = t2t−σ−2f̂(ξ, η) =

t−σ f̂(ξ, η) thanks to Property 2.

Figure 3: Zoom of an image

Finally, we could also want to zoom-in or out on a certain area of the image. One way would
be to translate the image so that the area of the image we want to zoom-in or out is centred and

zoom then. We recall the shift operator τaf(x) = f(x−a) and its Fourier Transform τ̂af(x)(ξ, η) =

e−it(ξ+η)f̂(ξ, η).

Figure 4: Translation of an image
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2.3 Radial function and distribution

Definition 4. Let f : Rn → R, n > 1, f is a radial function if ∃φ : R → R,∀x ∈ Rn such that
f(x) = φ(∥x∥) which means that the function is defined by the distance to the origin. Equivalently,
f is invariant to all rotations : f ◦R = f , ∀R ∈ SO(Rn).

Proposition 3. Land’s kernel k(x, y) defined in the equation above (2) is radial.

Proof. k(x, y) = 1√
x2+y2

= 1
∥(x,y)∥2

= φ(∥(x, y)∥2) with φ(∥x∥) = 1
∥x∥ .

Property 6. Let f : R2 → R be a C2 function, the Laplacian operator ∆f is invariant by rotation.

Proof. In two dimensions, performing a rotation is equivalent to obtaining the new coordinates(
u
v

)
=

(
cos(θ) −sin(θ)
sin(θ) cos(θ)

)
·
(
x
y

)
which gives

{
u = x cos(θ)− y sin(θ)
v = x sin(θ) + y cos(θ)

. We first compute

the first order derivative ∂
∂xf(u, v) +

∂
∂yf(u, v) = ∂u

∂x
∂f
∂u + ∂v

∂x
∂f
∂v + ∂u

∂y
∂f
∂u + ∂v

∂y
∂f
∂v = ∂f

∂ucos(θ) +
∂f
∂v sin(θ)−

∂f
∂usin(θ)+

∂f
∂v cos(θ) by using the chain rule. Repeating the same treatment by noticing

∂2

∂x2 f(u, v) +
∂2

∂y2 f(u, v) =
∂
∂x

∂f
∂x + ∂

∂y
∂f
∂y , we get

∂2f
∂x2 = ∂

∂x (
∂f
∂ucos(θ)+

∂f
∂v sin(θ)) =

∂f
∂x (

∂
∂ucos(θ)+

∂
∂v sin(θ)) = (∂f∂ucos(θ)+

∂f
∂v sin(θ))(

∂
∂ucos(θ)+

∂
∂v sin(θ))

∂2f
∂y2 = ∂

∂y (
∂f
∂v cos(θ)−

∂f
∂usin(θ)) =

∂f
∂y (

∂
∂v cos(θ)−

∂
∂usin(θ)) = (∂f∂v cos(θ)−

∂f
∂usin(θ))(

∂
∂v cos(θ)−

∂
∂usin(θ))

Finally, expanding everything we obtain ∂2

∂x2 f(u, v) +
∂2

∂y2 f(u, v) = ∂f
∂u (cos(θ)

2 + sin(θ)2) +

2 ∂2f
∂u∂v cos(θ)sin(θ)− 2 ∂2f

∂u∂v cos(θ)sin(θ) +
∂2f
∂2v (cos(θ)

2 + sin(θ)2) = ∂2

∂u2 f(u, v) +
∂2

∂v2 f(u, v).

Property 7. Let f ∈ L1(Rn) be a radial function then its Fourier Transform f̂ is well-defined and
is also radial.

Proof. By using Property 4 we have that forR, a rotation matrix acting on Rn, ̂f ◦R(ξ) = f̂◦R(ξ) =

f̂ since f is radial.

Lemma 1. Let f : Rn → R such that :
- f is σ-homogeneous (1)
- f is radial (2)
Then ∃C ∈ R such that f(x) = C∥x∥σ

Proof. Let B = (e⃗1, e⃗2, ..., e⃗n) be the canonical basis of Rn. We have ∀x ∈ Rn, ∃R ∈ SO(Rn) such

that x = λR · e⃗1, with λ = ∥x∥. Consequently, f(x) = f(R · λe⃗1)
(2)
= φ(∥R · λe⃗1∥) = φ(λ∥e⃗1∥)

(1)
=

λσf(e⃗1) = f(e⃗1)∥x∥σ meaning that f is necessarily of the form C∥x∥σ with C = f(e⃗1).

We would like to apply all these properties to Land’s kernel, however, it is not integrable. In
order to do this, we will introduce tempered distributions.

Definition 5. Schwartz Space on R is defined by S(R) = {f : R → C | f ∈ C∞(R),∀p, q ≥
0, sup

x∈Rn

|xpf (q)| < ∞}. It is the set of smooth, bounded and rapidly decreasing functions. Similarly,

S(Rn) is defined using monomials of degrees p and partial derivatives of degrees q. Notice that the
function of S(Rn) are rapidly decreasing towards 0.
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Remark : We also observe that Schwartz Space is closed by derivatives and by Fourier Transform

since f̂ (n) = (ik)nf̂ and x̂nf = inf̂ (n).

Definition 6. Tempered distributions [5] are the topological dual space of S(Rn). In other words a
tempered distribution T is a continuous linear map T : S(Rn) → C. The action of T on a Schwartz
function φ is denoted ⟨T, φ⟩.

The set of tempered distributions is denoted S ′. Then, Tf ∈ S′(Rn).

Example 1 : Let a ∈ Rn. We define the Dirac mass, δa by ⟨δa, φ⟩ = φ(a), ∀φ ∈ S(Rn).
Example 2 : Let f ∈ L1

loc(Rn), slowly increasing, then we define a distribution Tf by ⟨Tf , φ⟩ =∫
Rn f(x)φ(x)dx ∀φ ∈ S(Rn). This integral is always finite and it can be proved [5] that f 7→ Tf

is injective. Therefore we can interpret locally integrable slowly increasing functions as tempered
distributions.

Definition 7. The zoom of a distribution is defined by ⟨Zt(T ), φ⟩ = ⟨T, tnZt−1(φ)⟩.

Definition 8. The rotation of a distribution is defined by ⟨T ◦R,φ⟩ = ⟨T, φ ◦R−1⟩.

Definition 9. The derivative of a distribution is defined by ⟨∂xiT, φ⟩ = ⟨T,−∂xiφ⟩. Notice that
this definition makes sense since Schwartz Space is closed by derivatives.

Definition 10. The Fourier Transform of a tempered distribution T ∈ S ′ is the distribution T̂
defined by ⟨T̂ , φ⟩ = ⟨T, φ̂⟩. Notice that this definition makes sense since Schwartz Space is closed
by Fourier Transform.

These definitions are compatible with the correspondence between functions and distributions.
This is proved in the propositions below.

Definition 11. Let f be a C1 function, f is slowly increasing if ∀a > 0, lim
x→+∞

f(ax)
f(x) = 1.

Property 8. Let f ∈ L1
loc(Rn) be a slowly increasing and C1 function, then Zt(Tf ) = TZt(f).

Proof. These two distributions are well-defined. To prove that there are equal we have to check
that they produce the same result over an arbitrary function ⟨Zt(Tf ), φ⟩ = ⟨TZt(f), φ⟩ ∀φ ∈ S(Rn).

⟨Zt(Tf ), φ⟩
Definition 7

= ⟨Tf , t
nZt−1(φ)⟩ =

∫
Rn f(x)tnφ(t ∗ x)dx, setting u = t ∗ x, we get∫

Rn f(ut )φ(u)du =
∫
Rn Zt(f(u))φ(u)du = ⟨TZt(f), φ⟩.

Property 9. Let f ∈ L1
loc(Rn) be a slowly increasing and C1 function, then Tf ◦R = Tf◦R.

Proof. The proof is similar to Property 4 by setting u = R−1 · x.

Property 10. Let f ∈ L1
loc(Rn) be a slowly increasing and C1 function, then ∂xi

Tf = T∂xif .

Proof. ⟨∂xi
Tf , φ⟩

Definition 9
= ⟨Tf ,−∂xi

φ⟩ =
∫
Rn f(x)(− ∂

∂xi
φ(x))dx and by integration by parts we

get [φ(x)f(x)]+∞
−∞ +

∫
Rn

∂
∂xi

f(x)φ(x)dx = ⟨T∂xi
f , φ⟩ since φ is a rapidly decreasing function and f

is a slowly increasing function we have [φ(x)f(x)]+∞
−∞ = 0.
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Property 11. Let f ∈ L1
loc(Rn) and C1(Rn), then T̂f exists and T̂f = Tf̂ .

Proof. This is a consequence of Fubini’s theorem, therefore we have ⟨T̂f , φ⟩
Definition 10

= ⟨Tf , φ̂⟩ =∫
Rn f(x)φ̂(x)dx =

∫
Rn f̂(x)φ(x)dx = ⟨Tf̂ , φ⟩.

Proposition 4. Land’s kernel k(x, y) defined in the equation above (2) can be defined as a tempered
distribution and we can compute its Fourier Transform.

Proof. The function k(x, y) is a decreasing function, locally integrable and C∞(R2 \ (0, 0) so we can
define it as a tempered distribution.

Proposition 5. The Fourier Transform of Land’s kernel k̂ defined in the equation above (2) is

k̂ = k.

Proof. Thanks to Property 7, as the Fourier Transform of a radial function is radial, k̂ is radial.
Moreover, k̂ has the form C∥(x, y)∥σ by Lemma 1 where C = k(1, 0) = 1 and σ = −1

2 . We have

⟨Tk̂, φ⟩ = ⟨Tk, φ⟩ if 0 /∈ Supp(φ). Therefore, k̂ = k1(x,y)̸=(0,0) + δ(0,0) where δ will not be defined
here.

2.4 Land’s filter and its applications

Now, we can focus on the effects of applying this kernel to an image. We proved that k̂ = k, and

thanks to the convolution theorem we also have that for f, g ∈ L1(R), f̂ ∗ g = f̂ · ĝ. We remind

that by Fubini’s theorem ̂(f ∗ g)(x)(ξ) = 1
2π

∫
R2 f(t)g(x− t)e−ixξdtdx = 1

2π (
∫
R f(t)e−itξdt ·

∫
R g(x−

t)e−i(x−t)ξdx) = 1
2π (

∫
R f(t)e−itξdt ·

∫
R g(x)e−ixξdx) = f̂ · ĝ.

Finally, combining all these properties we get for an image u ∈ L1(R2), k̂ ∗ u = k̂ · û = k · û. We
then have to compute the Discrete Fourier Transform of u and must not forget to center k before
doing the pointwise product. We remind the 2D DFT ∈ CNxM of an image u

DFTu(k, l) =
1

N·M

N∑
x=0

M∑
y=0

u(x, y)e
−2πixk

N e
−2πiyl

M where N and M are the width and height of the

image. The convolution theorem holds for the discrete case.

Original image Image convolved with Land’s filter

Figure 5: Application of Land’s filter
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If the image is C2, we could also take its Laplacian to recover the original image since we have
∂̂2

∂η∂ξu(ξ, η) = (iξ) · (iη) · û = −ξη · û and ∆̂k = −(ξ2 + η2) · k̂ = k̂3 thanks to Property 3.

∆̂u = −(ξ2+η2) · û but knowing k̂ = k, we get − ̂k ∗ k ∗∆u = −k̂ ∗ k ·∆̂u = 1
ξ2+η2 (ξ

2+η2)û = û

∆u −k ∗∆u −k ∗ k ∗∆u

Figure 6: Retrieving the original image from the Laplacian

In practice, we use the Fast Fourier Transform to make the algorithm easier in complexity. The
complexity of the FFT is O(Nln(N)) where N is the size of the image, height × width and thanks to
the convolution theorem, the convolution in the Fourier domain has a O(N) complexity. The final
complexity to convolve the image with Land’s filter (2) is therefore O(Nln(N)+N) = O(Nln(N)).
Remark : we can also notice that k ∗∆u = ∆k ∗ u.

The second application we could do is Poisson image editing. We remind Poisson’s equation{
∆u(x) = f(x) if x ∈ Ω
u(x) = g(x) if x ∈ ∂Ω

(4)

where u is unknown and f , g ∈ L2(R2) are known. We let Ω be a closed subset of R2 and ∂Ω the
silhouette of this region. We now suppose we have a source image S ∈ L2(R2), C2, and a target
image f ∈ L2(R2) also C2. We denote v the vector field of the region in the source image, i.e. the
gradient (∂S∂x ,

∂S
∂y ). In the case of images, the derivative can be the forward finite difference i.e. for

the horizontal coordinates ∂S
∂x = lim

h→0

S(x+h,y)−S(x,y)
h

h=1
= S(x+ 1, y)− S(x, y) and similarly for the

horizontal coordinates.
The problem of blending two images [2] has been formulated by the following equation

min
u

∫
Ω

|∇u− v|2 such that u|∂Ω = f |∂Ω (5)

where ∇u = (∂u∂x ,
∂u
∂y ). The idea is to minimize color mismatch between the source and the target in

L2-norm. Finally, the colors on the boundaries have to match to avoid a discontinuity. This problem
(5) has a unique C2 solution which is given by Poisson’s equation (4) where f is the Laplacian of
the source image and g is the boundaries of the target image. We finally get ∆u = div v over Ω and
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u|∂Ω = f |∂Ω where div v = ∇⃗·v = ∆S. Land’s filter can be used to solve Poisson’s equation as we get
back the original image from the Laplacian i.e. ∆−1u = −k ∗ k ∗u. After computing the Laplacian,
there are different methods to solve the equation ∆u = ∆S such as the Jacobi method, Gauss-
Seidel method or LU decomposition. Similarly for the Laplacian, we compute it thanks to the finite

difference such as ∂2u
∂x2 = u′(x+1, y)−u′(x, y) = (u(x+2, y)−u(x+1, y))− (u(x+1, y)−u(x, y)) =

u(x + 2, y) − 2u(x + 1, y) + u(x, y). Similarly, we get ∂2u
∂y2 = u(x, y + 2) − 2u(x, y + 1) + u(x, y).

Shifting both the horizontal and vertical second order derivatives to the left and top respectively,

we get ∂2u
∂x2 = u(x + 1, y) − 2u(x, y) + u(x − 1, y) and ∂2u

∂y2 = u(x, y + 1) − 2u(x, y) + u(x, y − 1).

Therefore, we obtain ∆u(x, y) = u(x+ 1, y) + u(x− 1, y) + u(x, y + 1) + u(x, y − 1)− 4u(x, y) and

we can model the Laplacian as the filter

0 1 0
1 −4 1
0 1 0

. This filter can be used to solve Poisson’s

equation to calculate ∆u.
The final application is the Multiscale Retinex [3] which aims to enhance contrast or restore

colors. The idea is to model how the human eye sees and perceive the variations of lightness in an
image. In order to do this, Land developed a first algorithm that consisted in taking the average of
the intensity calculated through a collection of paths. However, in a later work [3], he updated his
method to avoid the paths and the random walks. This new method computes the ratio between
the original image and the image convolved with the filter. We define the Retinex function by

R(x, y) =
I(x, y)

(F ∗ I)(x, y)
(6)

where I is the input image and F is a surrounding function. We can use Land’s kernel defined in
the equation above (2) as a surrounding function to compute the Retinex as Land proposed to use
a singular radial kernel. Finally, we take the logarithm of R(x, y) which gives

log(R(x, y)) = log(I(x, y))− log((F ∗ I)(x, y)) (7)

This operation is not sufficient to get a good result, we can therefore restore the colors by giving
back a part of their initial intensity [4]. There are different approaches to do so, the one we are
going to use gives the final intensity R′(x, y) = R(x, y) · log(1 + C · I(x, y)) where C ∈ R. Using
Land’s kernel has the advantage of getting rid of parameters. On the other hand, there is less
flexibility compared to the Gaussian kernel with the standard deviation.

Input image Single Scale Retinex SSR with color restoration where C = 1000

Figure 7: Example of Single Scale Retinex with Land’s kernel
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Single Scale Retinex SSR with color restoration where C = 1000

Figure 8: Example of Single Scale Retinex with Gaussian kernel with σ = 3

As we can see, we obtain satisfactory results on a monochrome image with a Single Scale Retinex.
The results seem to better with Land’s kernel than the Gaussian kernel for this image.
Remark : the operations are performed on a single color channel image, this is a bit different if the
image contains more channels.
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3 U-Net

3.1 Architecture and training

3.1.1 Architecture

Doing the Fourier Transform can be computationally expensive, this is why we can try to apply
Land’s kernel defined in the equation above (2) thanks to a neural network. In this section we will
work with images of size 512× 512.

The U-Net [6] is a fully convolutional neural network used for image segmentation. The objective
of this neural network is to, from an input image, obtain a new image with additional features.
The name U-Net comes from the fact that it is U-shaped. It works similarly as an auto-encoder to
compress and decompress the data.

During the contraction, the image is firstly convolved by two kernels of size 3x3, each followed
by a ReLU activation to finish with a max pooling. This operation is repeated as many times as
necessary to obtain an image of size 1x1 or 2x2. The image is then convolved twice again followed
by a ReLU activation in the bottleneck. Finally, during the expansive path, unlike an auto-encoder
in order not to lose all the information, a concatenation is performed with the image of the same
size obtained during the contraction. We perform an up-sampling, which is a convolution transpose,
then, the resulting image is concatenated with the previous image obtained during the contraction.
In a similar way, we perform two 3x3 convolutions followed by a ReLU activation. This operation
is repeated as many times as necessary to obtain an image of a certain size. Finally, a convolution
of size 1x1 is performed.

Figure 9: U-Net architecture
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3.1.2 Training

Training the neural network to reproduce Land’s kernel is a difficult problem. Indeed, since
Land’s kernel has a vertical asymptote at 0, we can obtain really large values. Normalizing the
data would result in a loss of information. For example, an image with values in [0, 100] would
receive the same treatment as an image with values in [0, 255], which is wrong. However, since
Land’s kernel is symmetric, we can approximate it with a sum of Gaussians [7] and [8].

We will train the neural network to perform Gaussian blurs. The architecture we are going to
use is a bit different from the one in the article. The weights used for the contracting path will be the
same while the weights used for the expansive path will be different. We are also using an average
pooling instead of a maximum pooling, which makes more sense for a blur as we are considering
all the values. Moreover, since we are not dealing with a classification problem but a regression
problem, we will only use one 3x3 convolution without bias and without activation. We can evaluate
how many parameters we are going to train. Each convolution in the contracting path contains one
3x3 convolutions, receiving 1 channel and giving 1 channel. The bottleneck contains one circular
convolution as well. Finally, each convolution in the expansive path receives 2 channels, one from the
contracting path and one from the up sampling. The up sampling contains 4 parameters. The final
convolution is just a simple 1x1 convolution. Therefore, we have 1 · 9+1 · 9+9 · 4+9 · 2 · 9+1 = 217
parameters to train.
Remark : We call a convolution a 2D convolution.

Figure 10: U-Net architecture for blurring
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Besides that, we will use circular convolutions instead of zero-padding convolutions. The reason
for this is that we consider our images as being periodic. Indeed, in the Fourier domain, convolutions
are performed periodically on all values.

Figure 11: Circular convolution

Figure 12: Examples of training images

We train the U-Net to perform Gaussian blurs with σ = 3 and σ = 5 arbitrarily. We remind

the Fourier Transform of the Gaussian Gσ in dimension 2 Gσ(x, y) = 1
2πσ2 e

− x2+y2

2σ2 is Ĝσ(ξ, η) =

e−σ2 ξ2+η2

2 .

Indeed, we have Ĝσ(ξ, η) =
∫
R2

1
2πσ2 e

− x2+y2

2σ2 e−iξx−iηydxdy = 1√
2πσ2

∫
R e−

x2

2σ2 −iξxdx· 1√
2πσ2

∫
R e−

y2

2σ2 −iηydy =

1√
2πσ2

∫
R e−

(x+iξσ2)2

2σ2 −σ2ξ2

2 dx · 1√
2πσ2

∫
R e−

(y+iησ2)2

2σ2 −σ2η2

2 dy = e−
σ2ξ2

2 · e−
σ2η2

2 = e−σ2 ξ2+η2

2 . By using

the convolution theorem 2.4, we can label our images for the training.
In order to determine whether the network blurs the image correctly, we use the Mean Squared

Error loss (MSE). We are not facing a classification problem but a regression problem where every
pixels has to be edited, the MSE loss is therefore appropriate. We use Adam optimizer with a
variable learning rate depending on the training state.
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Figure 13: Loss Figure 14: Loss after 500 epochs

Figure 15: Loss with σ = 3

Figure 16: Loss Figure 17: Loss after 500 epochs

Figure 18: Loss with σ = 5

In both cases, the U-Net fits well to the data. We can evaluate how well it blurs with σ = 5 by
subtracting the image we should get from the image we get with the U-Net.

Input image Target Label Difference between label and target

Figure 19: Example of blurring with U-Net

The values in the difference figure 19 are bounded between -13 and 10 with a mean of -0.001,
which means that the blur is done correctly. With more training, we could achieve better results.
Finally, if we can manage to blur correctly with σ = 5, we can blur with a lower σ, which will be
used to approximate Land’s kernel (2).

Approximating Land’s kernel (2) as a sum of N Gaussians can be formulated as an optimization
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problem. For example, we could solve argmin
σ1,σ2,...,σn

∫
[1;M ]2

|
N∑
i=1

1√
2πσ2

i

e
− (x2+y2)

2σ2
i − k(x, y)|dxdy such

that σ1, σ2, ..., σN > 0 and M ∈ ]1; +∞[ being half of the image size for instance. The reason
we start the integral at 1 is due to the vertical asymptote in (0, 0) as we can define a Dirac in
the discrete case. Using the distributivity of the convolution product, we could get for an image

u ∈ L1(R2), u ∗ k ≈ u ∗ (
N∑
i=1

G(σi)) =
N∑
i=1

u ∗ G(σi) with G(σk) a Gaussian kernel of standard

deviation σk, k ∈ {1, ..., N}.

3.2 Experiments

Our goal is to apply Land’s filter (2) as fast as possible. We can imagine that we would like to
perform it on a 4K video with the aim of solving Poisson’s equation in real time. To compare the
speed of the methods with the Fourier Transform and with the U-Net we will use a data set of 200
images to blur. We will also use the Gaussian blur of σ = 5.

Method Treatment Time (in seconds)

Fourier Method (CPU)
Gaussian blur 4.16052
Land’s filter 5.10455

U-Net (CPU) Gaussian blur 3.27343
U-Net (GPU Google Colab) Gaussian blur 0.73865

The CPU used is an Intel Core i7-8700. We see that the U-Net is faster than the Fourier method
in both cases. However, we can imagine that we would need at least 3 Gaussians to approximate
Land’s kernel, which would result in a higher processing time. On the other hand, we clearly see
that the GPU of Google Colab performs much better than the CPU, almost 5 times faster.

4 Conclusion

In this supervised research, we studied the properties of Land’s kernel [1] and some of its possible
applications. We have also mentioned some of the possible operations on images such as zooming,
rotating or translating. The study in the sense of distributions of the kernel (2) allowed us to define
its Fourier Transform in order to apply the convolution theorem since the function is homogeneous
and the Fourier Transform of a radial function is radial. The first application we outlined is
Poisson’s equation for image editing. This equation is widely used and has many applications in
image processing such as stitching two images, add reflectance to an image, enhance contrast, add
an object in the background... The other application we presented is the Multiscale Retinex [3]
that aims to increase the brightness of an image. In our case, we use the Single Scale Retinex as
we are working with single channel images and used Land’s kernel (2) instead of a Gaussian kernel.
This has the advantage of getting rid of parameters and in our example, seems to give better results
although we can not really have flexibility on our operations.

The next objective we had was to implement a neural network capable to perform Land’s filter
(2) to gain in speed. However, implementing a neural network to apply this filter seems to be a
difficult problem due to the vertical asymptote in (0, 0). However, we noticed that by symmetry
of the kernel, it was possible to approximate it by a sum of Gaussians [7] and [8]. The reason we
chose a U-Net architecture [6] is that it is more consistent for larger σ. We have slightly modified
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the architecture so that the expansive path learns more than the contracting path. This makes
sense since we only want the contracting path to give an approximation of the blur to the expansive
path. To conclude, we compared speeds to perform a Gaussian blur of the two methods, using
the convolution theorem with the Fourier Transform and the U-Net. We observed that the U-Net
obtained better results, nevertheless, we would need to have at least 3 Gaussians to approximate
Land’s kernel (2) correctly, that would be slower that applying Land’s kernel (2) directly with
the convolution theorem. However, we clearly saw that the GPU on Google Colab achieved good
performance to perform a single Gaussian blur. The idea of approximating Land’s kernel (2) by
Gaussian kernels is very encouraging.

There are still trails to explore, such as solving Poisson’s equation [2] that could for instance edit
a 4K video in real-time, finding enough σ’s to approximate Land’s kernel (2) as a sum of Gaussians
[7] and [8] or perform Screen Space Ambient Occlusion [9], a technique used in computer graphics
to simulate the ambient occlusion effect in real-time where Land’s kernel (2) could be used as a
surrounding function.
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Image credits :
University of South California - Signal and Image Processing Institute
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