Topic G - Object detection and tracking with DiffusionDet

Antoine Ratouchniak

21/01,/2023

Abstract

Diffusion models [1] have shown very impressive results with
applications such as text-to-image with Imagen [2], DALL -
E 2, image generation [3] or high-quality image restoration
[4)]. In addition, object tracking is a field of computer vision
that has been extensively studied for academic and industrial
purposes [12].

1 Introduction

In this work, we propose the use of diffusion models for ob-
ject detection and tracking. We summarize how DiffusionDet
[9] works and we try to do some experiments to evaluate its
performance on images and videos. We also try to implement
SIFT [13] as an object tracker system.

2 Diffusion model

2.1 Reminder on diffusion models

Diffusion models [I] work by noising the data and denoising
it in a specific way in order to reconstruct/edit it. The model
can be broken down into two stages: the forward diffusion pro-
cess and the reverse diffusion process. The first stage noises
the data (blurs if it is an image) as follows: we let xg ~ ¢(z)
be the original data distribution and (1, ...z7) the data pro-
duced by the forward diffusion process at step ¢ € {1,...T'}.
We introduce the variance scheduler rates (81, ..., 8r) and
¢y ~ q(x¢|xi—1) a conditional probability distribution. The
probability distribution associated with the forward diffusion
process is q(z¢|wi—1) ~ N(v/1 = Bixi—1, ftI). Obtaining the
last x7 stage can be done in one step with the reparameter-
ization trick [5] giving xr ~ q(zr|z0) = N (Varwo, (1 —a)I)

T
by setting @y = [] a; and oy = 1 — ;. The second stage
reconstructs the z)rilginal data from the noisy one. Start-
ing from zr ~ p(ar) where p(zr) ~ N(0,I), we are look-
ing to recover xg. We introduce the conditional probabil-
ity distribution pg(zi—1]zs) ~ N(ug(xs,t),Xe(zs,t)) where
ng and Yy are learned by the network. Skipping the cal-
culations, with Bayes’ rule, and to avoid getting a too high
variance, we condition ¢ with xg to get the a posteriori dis-
tribution as follows: q(z;_1|zs,20) ~ N (fi(xs, o), BT) where

~ Vai—18 1—av— 5 1—a
f(we, 20) = 11_51 “xo + ﬁﬁ_gf l)xt and f; = 1:%;@-

For the training, the model minimizes the variational lower
bound instead of pg(xo) which is not directly computable. By
setting good values for 7" and (f, ..., Br) (generally increas-
ing with a cosine rate [6]), we can reconstruct the data. Ob-
viously, at the inference stage, we do not have x, this is why
we set xg = ﬁ(mt — /1 —@e;) thanks to (2.1.1) where ¢, is
the network output at step t. The architecture used for the
reverse diffusion process is generally a U-Net [7] with cross-
attention layers [8]. Finally, the network has to learn fi(zs, o)
if we suppose Xy is fixed, since we know all the (81, ..., B1).

2.2 Adaptation to DiffusionDet

Inspired by diffusion models, DiffusionDet [9] uses the same
process to detect objects bounding boxes. Indeed, starting
from ground truth boxes, the bounding boxes’ coordinates are
disturbed with a Gaussian noise. Then, following similar steps
as diffusion models [2.1] DiffusionDet refines bounding boxes
and keeps the best ones. However, there are some differences
we need to mention. DiffusionDet is decomposed into two
parts, the first part, the encoder, extracts high-level features
and creates multi-scale versions of the image with Feature
Pyramid Network [I0]. The second part, the decoder, takes
as inputs the noisy bounding boxes from the encoder and the

high-level features, and crops region of interest (Rol). These
Rol are sent to the head of the network to classify whether
there is an object or not. This decoding step is performed 6
times iteratively to refine the bounding box coordinates. At
inference stage, since ground truth boxes are unknown, ran-
dom boxes with coordinates following a Gaussian distribution
are generated. Finally, the reverse diffusion process is applied
through the decoding steps.

Figure 1: (a): input image, (b): random bounding boxes
sampled from a Gaussian, (c): final prediction

3 Experiments

3.1 Object detection

The first thing we do is to evaluate DiffusionDet on MS-
COCO validation dataset [I1] to see if we get similar results
as the article. We use DiffusionDet weights trained on the
MS-COCO training dataset with Resnet-101 as a backbone.

Stomn Precision AP | APy | AP+ | AP,
DiffusionDet (1 step) | 46.5 | 66.3 | 50.0 | 30.0
DiffusionDet (4 steps) | 46.9 | 66.9 | 50.4 | 30.6
DiffusionDet (8 steps) | 47.1 | 67.1 | 50.5 | 30.4

AP,

49.5
49.6
50.0

DiffusionDet (1 step)
DiffusionDet (4 steps)
DiffusionDet (8 steps)

Table 1: Precision metrics on MS-COCO validation dataset
with different timesteps with DiffusionDet

The results are very close to the paper. Indeed, since
bounding boxes are randomly generated, the results might be

. a bit different. One thing we can notice is that the inference
| stage according to the number of box proposals is linear.

=}
=
v

Time (in seconds)
o
=
o

0.20 A
) | | ‘
0.00 -
100 200 300 400 500

Box proposals

Figure 2: Execution time for different number of box
proposals on a 480x640 image with a GeForce RTX 2060

3.2 Object tracking

We remind the two scores to measure an object tracking sys-
tem:

MOTA = 1 — ZENARAEIDSWE and MOTP = X4
where F'N = False Negative = object not detected, FP =
False Positive = object that should not be detected, and
IDSW = Identity Switch = confusion between two objects or
if the ID is not the same between two frames when it should
have been the same. Finally, |GT| denotes the number of
bounding boxes in the frame and c is the number of matches

while ¢ denotes the frame number. However, in the MOT16
dataset [12], we do not know the identities of objects, there-

fore, we use MOTA =1— %. A question one might
t

ask is whether the number of sampling timesteps will also in-
crease MOTP and MOTA in the same way as the different
average precisions for object detection. Here are the results
for different sampling timesteps and different numbers of box
proposals.

Box proposals | 550 | 400 | 300 | 200 | 100

Steps
DiffusionDet (1 step) 63.8 | 63.4 | 62.6 | 59.8 | 35.7
DiffusionDet (4 steps) 63.7 | 63.5 | 62.4 | 59.7 | 36.0
DiffusionDet (8 steps) | 63.9 | 63.2 | 62.4 | 60.1 | 35.5

Table 2: MOTA metric on MOT16 dataset with different
timesteps and box proposals with DiffusionDet

In comparison, here are the results with state-of-the-art
trackers according to the MOT challenge website.

Tracker MOTA
1. ppbytemot 7.7
2. GMOTv2 76.6
3. VAITracker2 75.9
4. SacMOT 75.8
5. STRTrach 75.2

Table 3: MOT A metric on MOT16 dataset with different
trackers

Obviously, the comparison is biased since we removed the
IDSW from the calculations.

The MOTP metric with DiffusionDet gave almost the
same results (= 73.9) for all the cells and is therefore not
relevant to add. The results for the MOTA metric are all
quite similar even when the number of timesteps increases.
Contrary to what we expected, it seems that the number of
timesteps does not increase the accuracy. One of the reasons
could be that the MOT16 dataset contains a lot of objects,
therefore leading to random bounding boxes to find an object
with a high probability.

One other question one may ask is if starting from a prior
distribution at a frame ¢ would help to detect objects at a
frame t + 1. However, we need to fix a proportion of prior
boxes. Keeping 1 timestep, we get the following results.

Box prop.

. 500 | 400 | 300 | 200 | 100
Prior prop.

50% 65.9 | 64.5 | 61.7 | 54.9 | 27.7

75% 63.9 | 59.0 | 54.1 | 43.6 | 19.0

95% 35.5 | 29.0 | 23.9 | 1.9 | 5.0

Table 4: MOT A metric on MOT16 dataset with different
prior proportions and box proposals with DiffusionDet

Figure 3: Example of a priori boxes between two consecutive
frames; (a): random boxes at frame ¢, (b): random boxes + a
priori boxes on frame t 4+ 1, (¢): a priori boxes only on frame
t+1

Once again, M OT P scores are not relevant to add as they
are all extremely close by row (a2 73.9,73.6,73.9). We notice
that we get a new higher MOT A score with 500 boxes and
50% of the boxes set to boxes from the previous frame. In ad-
dition to that, using 400 boxes and 50% prior still give a bet-
ter M OT A score than without prior distribution, saving 100
boxes. This is a really good improvement even if the process is
linear in terms of the number of boxes. We could also expect
to get similar improvements with other backbones. However,
we clearly see a rapid decrease in accuracy when the prior
proportion increases. This is probably due to a bad trade-off
between exploration and exploitation. Indeed, it is important
to still have some boxes able to detect new objects on the
video.

Finally, we could also ask ourselves how many frames the
previous box prior might be worth keeping. We got almost
the same results for t + 1, t + 5, ¢ + 10, and ¢ + 20 frames so
we decide not to report the result here. The results can be
found in the notebook.

https://motchallenge.net/results/MOT16/

3.3 SIFT implementation

The object tracking system implemented with DiffusionDet
is known as Jaccard index. The way it works is that we
consider that two objects are the same from a frame t and
t 41 if the two classes are the same and the intersection over
union is greater than a threshold, 0.6 in DiffusionDet. In
this subsection, we show how we tried to implement SIFT
[13] for object tracking. This approach has already been im-
plemented in other studies ([I4], [I5], [16]). The idea is to
consider two objects identical from a frame ¢ to ¢ 4 1 if there
are of the same class and they share a good ”similarity score”.
It works as follows: for each untracked object by the track-
ing algorithm implemented with DiffusionDet, we compute its
SIFT descriptors. If an object has not found a match from
an object in the previous frame, we check among objects that
did not find a match either. If two objects are of the same
class, we compare their descriptors using Lowe’s second near-
est neighbor. The algorithm returns the nearest 2 neighbors
obtained with the L' metric and we finally decide to consider
a match if the ratio between the best match and the second
best match is below a threshold. We consider the object is
the same from a frame ¢ to t + 1 if they share enough matches
(potentially more matches for a big object and less for a little
object). In the example below, if we denote matches the to-
tal number of matches, we consider two objects are the same
if matches > min(length(old_keypoints),length(keypoints)
where old_keypoints indicates the number of keypoints in the
previous object and keypoints the number of keypoints in the
actual detected object. Even though this method seems in-
teresting, it is difficult to make it robust. Indeed, parameters
such as the contrast threshold, the edge threshold, the met-

References

ric to measure distances between descriptors, the threshold
for the ratio test, and the number of matches to consider the
same object... make it difficult to parameterize.

Figure 4: Example of SIFT use between two frames from
BoBoT benchmark dataset [I7]; (a): detections at frame ¢,
(b): detection at frame t + 1, (¢): SIFT matches between the
ball from frame ¢ and ¢t + 1

4 Conclusion

This work proposed the use of diffusion models for object de-
tection and tracking. DiffusionDet gives really good results on
object detection and tracking. We were even able to improve
the MOT A score by using prior distributions. In addition,
we tried to implement SIFT for object tracking, which would
deserve further investigations. However, DiffusionDet is com-
putationally too expensive as we can only run 5 FPS with 500
boxes on a GeForce RTX 2060.

[1] Ho, Jonathan, Ajay Jain, and Pieter Abbeel. ” Denoising diffusion probabilistic models.” Advances in Neural Information

Processing Systems 33 (2020): 6840-6851.

[2] Saharia, Chitwan, et al. "Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding.” arXiv

preprint arXiv:2205.11487 (2022).

[3] Dhariwal, Prafulla, and Alexander Nichol. ”Diffusion models beat gans on image synthesis.” Advances in Neural Infor-

mation Processing Systems 34 (2021): 8780-8794.

[4] Rombach, Robin, et al. ”High-resolution image synthesis with latent diffusion models.” Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition. 2022.

Kingma, Diederik P., and Max Welling. ” Auto-encoding variational bayes.” arXiv preprint arXiv:1312.6114 (2013).

Nichol, Alexander Quinn, and Prafulla Dhariwal. "Improved denoising diffusion probabilistic models.” International
Conference on Machine Learning. PMLR, 2021.

Ronneberger, Olaf, Philipp Fischer, and Thomas Brox. ”U-net: Convolutional networks for biomedical image segmen-
tation.” International Conference on Medical image computing and computer-assisted intervention. Springer, Cham,
2015.

Chen, Chun-Fu Richard, Quanfu Fan, and Rameswar Panda. ”Crossvit: Cross-attention multi-scale vision transformer
for image classification.” Proceedings of the IEEE/CVF international conference on computer vision. 2021.

Chen, Shoufa, et al. ?Diffusiondet: Diffusion model for object detection.” arXiv preprint arXiv:2211.09788 (2022).

Lin, Tsung-Yi, et al. ”Feature pyramid networks for object detection.” Proceedings of the IEEE conference on computer
vision and pattern recognition. 2017.

Lin, Tsung-Yi, et al. ”Microsoft coco: Common objects in context.” European conference on computer vision. Springer,
Cham, 2014.

Luo, Wenhan, et al. ?Multiple object tracking: A literature review.” Artificial Intelligence 293 (2021): 103448.

Lowe, David G. ”Distinctive image features from scale-invariant keypoints.” International journal of computer vision
60.2 (2004): 91-110.

Zhou, Huiyu, Yuan Yuan, and Chunmei Shi. ”Object tracking using SIFT features and mean shift.” Computer vision
and image understanding 113.3 (2009): 345-352.

Deori, Barga, and Dalton Meitei Thounaojam. ” A survey on moving object tracking in video.” International Journal on
Information Theory (IJIT) 3.3 (2014): 31-46.

Kim, Young Min. ”Object tracking in a video sequence.” CS 229 (2007): 366-384.

Dubuisson, Séverine, and Christophe Gonzales. ” A survey of datasets for visual tracking.” Machine Vision and Applica-
tions 27.1 (2016): 23-52.

	Introduction
	Diffusion model
	Reminder on diffusion models
	Adaptation to DiffusionDet

	Experiments
	Object detection
	Object tracking
	SIFT implementation

	Conclusion

